The Influence of Wildfire Smoke on Cloud Microphysics during the September 2020 Pacific Northwest Wildfires

Author:

Conrick Robert1,Mass Clifford F.1,Boomgard-Zagrodnik Joseph P.2,Ovens David1

Affiliation:

1. 1 Department of Atmospheric Sciences, University of Washington, Seattle, Washington

2. 2 Washington State University, Pullman, Washington

Abstract

AbstractDuring late summer 2020, large wildfires over the Pacific Northwest produced dense smoke that impacted the region for an extended period. During this period of poor air quality, persistent low-level cloud coverage was poorly forecast by operational numerical weather prediction models, which dissipated clouds too quickly or produced insufficient cloud coverage extent. This deficiency raises questions about the influence of wildfire smoke on low-level clouds in the marine environment of the Pacific Northwest.This paper investigates the effects of wildfire smoke on the properties of low-level clouds, including their formation, microphysical properties, and dissipation. A case study from 12-14 September 2020 is used as a testbed to evaluate the impact of wildfire smoke on such clouds. Observations from satellites and surface observing sites, coupled with mesoscale model simulations, are applied to understand the influence of wildfire smoke during this event. Results indicate that the presence of thick smoke over Washington led to decreased temperatures in the lower troposphere which enhanced low-level cloud coverage, with smoke particles altering the microphysical structure of clouds to favor high concentrations of small droplets. Thermodynamic changes due to smoke are found to be the primary driver of enhanced cloud lifetime during these events, with microphysical changes to clouds as a secondary contributing factor. However, both the thermodynamic and microphysical effects are necessary to produce a realistic simulation.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3