A Single Column Model Evaluation of Mixing Length Formulations and Constraints for the sa-TKE-EDMF Planetary Boundary Layer Parameterization

Author:

Strobach Edward J.1

Affiliation:

1. IMSG at NOAA/NWS/NCEP/EMC, College Park, MD, USA

Abstract

AbstractParameterizing boundary layer turbulence is a critical component of numerical weather prediction and the representation of turbulent mixing of momentum, heat, and other tracers. The components that make up a boundary layer scheme can vary considerably, with each scheme having a combination of processes that are physically represented along with tuning parameters that optimize performance. Isolating a component of a PBL scheme to examine its impact is essential for understanding the evolution of boundary layer profiles and their impact on the mean structure. In this study we conduct three experiments with the scale-aware TKE eddy-diffusivity mass-flux (sa-TKE-EDMF) scheme: 1) releasing the upper limit constraints placed on mixing lengths, 2) incrementally adjusting the tuning coefficient related to wind shear in the modified Bougeault and Lacarrere (BouLac) mixing length formulation, and 3) replacing the current mixing length formulations with those used in the MYNN scheme. A diagnostic approach is adopted to characterize the bulk representation of turbulence within the residual layer and boundary layer in order to understand the importance of different terms in the TKE budget as well as to assess how the balance of terms changes between mixing length formulations. Although our study does not seek to determine the best formulation, it was found that strong imbalances led to considerably different profile structures both in terms of the resolved and subgrid fields. Experiments where this balance was preserved showed a minor impact on the mean structure regardless of the turbulence generated. Overall, it was found that changes to mixing length formulations and/or constraints had stronger impacts during the day while remaining partially insensitive during the evening.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3