Forecasting Northern Australian Summer Rainfall Bursts Using a Seasonal Prediction System

Author:

Abstract

Abstract Rainfall bursts are relatively short-lived events that typically occur over consecutive days, up to a week. Northern Australian industries like sugar farming and beef are highly sensitive to burst activity, yet little is known about the multiweek prediction of bursts. This study evaluates summer (December–March) bursts over northern Australia in observations and multiweek hindcasts from the Bureau of Meteorology’s multiweek to seasonal system, the Australian Community Climate and Earth-System Simulator, Seasonal version 1 (ACCESS-S1). The main objective is to test ACCESS-S1’s skill to confidently predict tropical burst activity, defined as rainfall accumulation exceeding a threshold amount over three days, for the purpose of producing a practical, user-friendly burst forecast product. The ensemble hindcasts, made up of 11 members for the period 1990–2012, display good predictive skill out to lead week 2 in the far northern regions, despite overestimating the total number of summer burst days and the proportion of total summer rainfall from bursts. Coinciding with a predicted strong Madden–Julian oscillation (MJO), the skill in burst event prediction can be extended out to four weeks over the far northern coast in December; however, this improvement is not apparent in other months or over the far northeast, which shows generally better forecast skill with a predicted weak MJO. The ability of ACCESS-S1 to skillfully forecast bursts out to 2–3 weeks suggests the bureau’s recent prototype development of a burst potential forecast product would be of great interest to northern Australia’s livestock and crop producers, who rely on accurate multiweek rainfall forecasts for managing business decisions.

Funder

Meat and Livestock Australia

Department of Agriculture and Fisheries, Queensland Government

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference94 articles.

1. Tropical rainfall subseasonal-to-seasonal predictability types;Moron;npj Climate Atmos. Sci.,2020

2. The Met Office Unified Model Global Atmosphere 6.0/6.1 and JULES Global Land 6.0/6.1 configurations;Walters;Geosci. Model Dev.,2017

3. Influence of the Madden–Julian Oscillation on multiweek prediction of Australian rainfall extremes using the ACCESS-S1 prediction system;Marshall;J. South. Hemisphere Earth Syst. Sci.,2021

4. Opportunity knocks : Sowing wheat early in the north-eastern wheatbelt;Kerr;J. Dep. Agric. West. Aust., Ser. 4,1992

5. Defining the north Australian monsoon onset: A systematic review;Lisonbee;Prog. Phys. Geogr.,2019

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3