Diagnostics of Tropical Variability for Numerical Weather Forecasts

Author:

Gehne Maria12,Wolding Brandon12,Dias Juliana2,Kiladis George N.2

Affiliation:

1. a CIRES, University of Colorado Boulder, Boulder, Colorado

2. b Physical Sciences Laboratory, NOAA, Boulder, Colorado

Abstract

Abstract Tropical precipitation and circulation are often coupled and span a vast spectrum of scales from a few to several thousands of kilometers and from hours to weeks. Current operational numerical weather prediction (NWP) models struggle with representing the full range of scales of tropical phenomena. Synoptic to planetary scales are of particular importance because improved skill in the representation of tropical larger-scale features such as convectively coupled equatorial waves (CCEWs) has the potential to reduce forecast error propagation from the tropics to the midlatitudes. Here we introduce diagnostics from a recently developed tropical variability diagnostics toolbox, where we focus on two recent versions of NOAA’s Unified Forecast System (UFS): operational GFSv15 forecasts and experimental GFSv16 forecasts from April to October 2020. The diagnostics include space–time coherence spectra to identify preferred scales of coupling between circulation and precipitation, pattern correlations of Hovmöller diagrams to assess model skill in zonal propagation of precipitating features, CCEW skill assessment, plus a diagnostic aimed at evaluating moisture–convection coupling in the tropics. Results show that the GFSv16 forecasts are slightly more realistic than GFSv15 in their coherence between precipitation and model dynamics at synoptic to planetary scales, with modest improvements in moisture convection coupling. However, this slightly improved performance does not necessarily translate to improvements in traditional precipitation skill scores. The results highlight the utility of these diagnostics in the pursuit of better understanding of NWP model performance in the tropics, while also demonstrating the challenges in translating model advancements into improved skill.

Funder

Cooperative Institute for Research in Environmental Sciences

Earth System Research Laboratories

California Department of Water Resources

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3