Predicting Rapid Intensification in North Atlantic and Eastern North Pacific Tropical Cyclones Using a Convolutional Neural Network

Author:

Griffin Sarah M.1,Wimmers Anthony1,Velden Christopher S.1

Affiliation:

1. a Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, Madison, Wisconsin

Abstract

Abstract This study develops a probabilistic model based on a convolutional neural network to predict rapid intensification (RI) in both North Atlantic and eastern North Pacific tropical cyclones (TCs). Coined “I-RI,” an advantage of using a convolutional neural network to predict RI is that it is designed to learn from spatial fields, like two-dimensional satellite imagery, as well as scalar features. The resulting model RI probability output is validated against two operational RI guidances—an empirical and a deterministic method—to assess skill at predicting RI over 12-, 24-, 36-, 48-, and 72-h lead times. Results indicate that in North Atlantic TCs, AI-RI is more skillful at predicting RI over 12- and 24-h lead times compared to both operational RI guidances. In eastern North Pacific TCs, AI-RI is more skillful than the empirical operational RI guidance at most RI thresholds, but less skillful than the deterministic RI guidance at all thresholds. For TCs north of 15°N, where the deterministic skill was lower, AI-RI was more skillful than the deterministic operational guidance for over half of the RI thresholds. It is also found that AI-RI struggles to reach the higher RI probabilities produced by both of the operational RI guidances in both basins. This work demonstrates that the two-dimensional structures within the satellite imagery of TCs and the evolution of these structures identified using the difference in satellite images, captured by a convolutional neural network, yield better 12–24-h indicators of RI than existing scalar assessments of satellite brightness temperature. Significance Statement The purpose of this study is to develop a method to predict tropical cyclone rapid intensification using artificial intelligence. The developed model uses a convolutional neural network, which can identify features in satellite imagery that are indicative of rapid intensification. The results suggest that, compared with current operational rapid intensification models, a convolutional neural network approach is generally more skillful at predicting rapid intensification.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference48 articles.

1. Satellite-observed latent heat release in a tropical cyclone;Adler, R. F.,1977

2. Observations of deep convection in the tropics using the Tropical Rainfall Measuring Mission (TRMM) precipitation radar;Alcala, C. M.,2002

3. Cangialosi, J. P., and J. L. Franklin, 2014: 2013 National Hurricane Center verification report. NHC, 84 pp., http://www.nhc.noaa.gov/verification/pdfs/Verification_2013.pdf.

4. Recent progress in tropical cyclone intensity forecasting at the National Hurricane Center;Cangialosi, J. P.,2020

5. The influence of tropical cyclone size on its intensification;Carrasco, C. A.,2014

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3