Wave-Coherent Air–Sea Heat Flux

Author:

Veron Fabrice1,Melville W. Kendall2,Lenain Luc2

Affiliation:

1. College of Marine and Earth Studies, University of Delaware, Newark, Delaware

2. Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Abstract

Abstract Air–sea fluxes of heat and momentum play a crucial role in weather, climate, and the coupled general circulation of the oceans and atmosphere. Much progress has been made to quantify momentum transfer from the atmosphere to the ocean for a wide range of wind and wave conditions. Yet, despite the fact that global heat budgets are now at the forefront of current research in atmospheric, oceanographic, and climate problems and despite the good research progress in recent years, much remains to be done to better understand and quantify air–sea heat transfer. It is well known that ocean-surface waves may support momentum transfer from the atmosphere to the ocean, but the role of the waves in heat transfer has been ambiguous and poorly understood. Here, evidence is presented that there are surface wave–coherent components of both the sensible and the latent heat fluxes. Presented here are data from three field experiments that show modulations of temperature and humidity at the surface and at 10–14 m above the surface, which are coherent with the surface wave field. The authors show that the phase relationship between temperature and surface displacement is a function of wind speed. At a 10–12-m elevation, a wave-coherent heat transfer of O(1) W m−2 is found, dominated by the latent heat transfer, as well as wave-coherent fractional contributions to the total heat flux (the sum of latent and sensible heat fluxes) of up to 7%. For the wind speeds and wave conditions of these experiments, which encompass the range of global averages, this wave contribution to total heat flux is comparable in magnitude to the atmospheric heat fluxes commonly attributed to the effects of greenhouse gases or aerosols. By analogy with momentum transfer, the authors expect the wave-coherent heat transfer to decay with height over scales on the order of k−1, where k is the characteristic surface wavenumber; therefore, it is also expected that measurements at elevations of O(10) m may underestimate the contribution of the wave-induced heat flux to the atmosphere.

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3