Comparison of Five Satellite-Derived Latent Heat Flux Products to Moored Buoy Data

Author:

Bourras Denis1

Affiliation:

1. CETP–CNRS–IPSL, UMR 8639, Vélizy-Villacoublay, France

Abstract

Abstract Five satellite products of latent heat flux at the sea surface were compared to bulk fluxes calculated with data from 75 moored buoys, on almost 36 successive months from 1998 to 2000. The five products compared are the Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Dataset (HOAPS-2), the Japanese Ocean Flux Datasets with Use of Remote Sensing Observations (J-OFURO), the Jones dataset, the Goddard Satellite-Based Surface Turbulent Fluxes, version 2 (GSSTF-2), and the Bourras–Eymard–Liu dataset (BEL). The comparisons were performed under tropical and midlatitude environmental conditions, with three datasets based on 66 Tropical Atmosphere–Ocean array (TAO) buoys in the tropical Pacific, nine National Data Buoy Center (NDBC) buoys off the U.S. coasts, and four Met Office/Météo-France (UK–MF) moorings west of the United Kingdom and France, respectively. The satellite products did not all compare well to surface data. However, for each in situ dataset (TAO, NDBC, or UK–MF) at least one satellite product was found that had a good fit to surface data, that is, an rms deviation of 15–30 W m−2. It was found that HOAPS-2, J-OFURO, GSSTF-2, and BEL satellite products had moderate systematic errors with respect to surface data, from −13 to 26 W m−2, and small biases at midlatitudes (6–8 W m−2). Most of the satellite products were able to render the seasonal cycle of the latent heat flux calculated with surface data. The estimation of near-surface specific humidity was found to be problematic in most products, but it was best estimated in the HOAPS-2 product. GSSTF-2 and J-OFURO strongly overestimated the surface flux variations in time and space compared to surface data and to a flux climatology. With respect to TAO data, Jones fluxes yielded good results in terms of rms deviation (27 W m−2) but also presented a large systematic deviation. Overall, for application of the satellite fluxes to the world oceans, it was found that HOAPS-2 was the most appropriate product, whereas for application to the Tropics, BEL fluxes had the best performance in rms with respect to TAO data (24 W m−2).

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference31 articles.

1. Satellite estimates of wind speed and latent heat flux over the global oceans.;Bentamy;J. Climate,2003

2. Bourras, D. , 2000: Calcul des flux turbulents à la surface des océans par la méthode bulk (in French). Tech. Note CETP, RI-CETP/2/2000, 45 pp.

3. A neural network to estimate the latent heat flux over oceans from satellite observations.;Bourras;Int. J. Remote Sens.,2002

4. Evaluation of latent heat flux fields from satellites and models over the SEMAPHORE region.;Bourras;J. Appl. Meteor.,2003

5. Response of the atmospheric boundary layer to a mesoscale oceanic eddy in the northeast Atlantic.;Bourras;J. Geophys. Res.,2004

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3