Development of a Long-Range Lightning Detection Network for the Pacific: Construction, Calibration, and Performance*

Author:

Pessi Antti T.1,Businger Steven1,Cummins K. L.2,Demetriades N. W. S.3,Murphy M.3,Pifer B.3

Affiliation:

1. Department of Meteorology, University of Hawaii at Manoa, Honolulu, Hawaii

2. The University of Arizona, Tucson, Arizona

3. Vaisala, Inc., Tucson, Arizona

Abstract

Abstract The waveguide between the earth’s surface and the ionosphere allows very low-frequency (VLF) emissions generated by lightning, called sferics, to propagate over long distances. The new Pacific Lightning Detection Network (PacNet), as a part of a larger long-range lightning detection network (LLDN), utilizes this attribute to monitor lightning activity over the central North Pacific Ocean with a network of ground-based lightning detectors that have been installed on four widely spaced Pacific islands (400–3800 km). PacNet and LLDN sensors combine both magnetic direction finding (MDF) and time-of-arrival (TOA)-based technology to locate a strike with as few as two sensors. As a result, PacNet/LLDN is one of the few observing systems, outside of geostationary satellites, that provides continuous real-time data concerning convective storms throughout a synoptic-scale area over the open ocean. The performance of the PacNet/LLDN was carefully assessed. Long-range lightning flash detection efficiency (DE) and location accuracy (LA) models were developed with reference to accurate data from the U.S. National Lightning Detection Network (NLDN). Model calibration procedures are detailed, and comparisons of model results with lightning observations from the PacNet/LLDN in correlation with NASA’s Lightning Imaging Sensor (LIS) are presented. The daytime and nighttime flash DE in the north-central Pacific is in the range of 17%–23% and 40%–61%, respectively. The median LA is in the range of 13–40 km. The results of this extensive analysis suggest that the DE and LA models are reasonably able to reproduce the observed performance of PacNet/LLDN. The implications of this work are that the DE and LA model outputs can be used in quantitative applications of the PacNet/LLDN over the North Pacific Ocean and elsewhere. For example, by virtue of the relationship between lightning and rainfall rates, these data also hold promise as input for NWP models as a proxy for latent heat release in convection. Moreover, the PacNet/LLDN datastream is useful for investigations of storm morphology and cloud microphysics over the central North Pacific Ocean. Notably, the PacNet/LLDN lightning datastream has application for planning transpacific flights and nowcasting of squall lines and tropical storms.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3