The Statistics and Structure of Subseasonal Midlatitude Variability in NASA GSFC GCMs

Author:

Robinson Dennis P.1,Black Robert X.1

Affiliation:

1. School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia

Abstract

Abstract A comprehensive analysis of midlatitude intraseasonal variability in extended integrations of NASA GSFC general circulation models (GCMs) is conducted. This is approached by performing detailed intercomparisons of the representation of the storm tracks and anomalous weather regimes occurring during wintertime in the Atmospheric Model Intercomparison Project (AMIP)-type simulations of both the NASA–NCAR and a version of the Aries model used in NASA’s Seasonal-to-Interannual Prediction Project (NSIPP) model. The model-simulated statistics, three-dimensional structure, and dynamical characteristics of these phenomena are diagnosed and directly compared to parallel observational analyses derived from NCEP–NCAR reanalyses. A qualitatively good representation of the vertical structure of intraseasonal eddy kinetic energy (EKE) is provided by both models with maximum values of EKE occurring near 300 hPa. The main model shortcoming is an underestimation of EKE in the upper troposphere, especially for synoptic eddies in the NSIPP model. Nonetheless, both models provide a reasonable representation of the three-dimensional structure and dynamical characteristics of synoptic eddies. Discrepancies in the storm-track structures simulated by the models include an anomalous local minimum over the eastern Pacific basin. However, both GCMs faithfully reproduce the observed Pacific midwinter storm-track suppression. Interestingly, the NSIPP model also produces a midwinter suppression feature over the Atlantic storm track in association with the anomalously strong upper-level jet stream simulated by NSIPP in this region. The regional distribution of anomalous weather regime events is well simulated by the models. However, substantial structural differences exist between observed and simulated events over the North Pacific region. In comparison to observations, model events are horizontally more isotropic, have stronger westward vertical tilts, and are more strongly driven by baroclinic dynamics. The structure and dynamics of anomalous weather regimes occurring over the North Atlantic region are qualitatively better represented by the models. The authors suggest that model deficiencies in representing the zonally asymmetric climatological-mean flow field (particularly the magnitude and structure of the Pacific and Atlantic jet streams) help contribute to model shortcomings in (i) the strength and seasonal variability of the storm tracks and (ii) dynamical distinctions in the maintenance of large-scale weather regimes.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3