Near-Surface Atmospheric Behavior over Complex Tropical Topography in Puerto Rico Dominated by Seasonal Patterns Despite Frequent Environmental Changes

Author:

Van Beusekom Ashley E.1,González Grizelle1

Affiliation:

1. a International Institute of Tropical Forestry, U.S. Department of Agriculture Forest Service, Río Piedras, Puerto Rico

Abstract

Abstract Understanding near-surface atmospheric behavior in the tropics is imperative given the role of tropical energy fluxes in Earth’s climate cycles, but this area is complicated by a land–atmosphere interaction that includes rugged topography, seasonal weather drivers, and frequent environmental disturbances. This study examines variation in near-surface atmospheric behaviors in northeastern Puerto Rico using a synthesis of data from lowland and montane locations under different land covers (forest, urban, and rural) during 2008–21, when a severe drought, large hurricanes (Irma and Maria), and the COVID-19 mobility-reducing lockdown occurred. Ceilometer, weather, air quality, radiosonde, and satellite data were analyzed for annual patterns and monthly time series of data and data correlations. The results showed a system that is strongly dominated by easterly trade winds transmitting regional oceanic patterns over terrain. Environmental disturbances affected land–atmosphere interaction for short time periods after events. Events that reduce the land signature (reducing greenness: e.g., drought and hurricanes, or reducing land pollution: e.g., COVID-19 lockdown) were evidenced to strengthen the transmission of the oceanic pattern. The most variation in near-surface atmospheric behavior was seen in the mountainous areas that were influenced by both factors: trade winds, and terrain-induced orographic lifting. As an exception to the rest of the near-surface atmospheric behavior, pollutants other than ozone did not correlate positively or negatively with stronger trade winds at all sites across the region. Instead, these pollutants were hypothesized to be more anthropogenically influenced. Once COVID-19 lockdown had persisted for 3 months, urban pollution decreased and cloud base may have increased.

Publisher

American Meteorological Society

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3