Analysis of Kenya’s Atmospheric Moisture Sources and Sinks

Author:

Keys Patrick W.1,Warrier Rekha1,van der Ent Ruud J.2,Galvin Kathleen A.34,Boone Randall B.56

Affiliation:

1. a School of Global Environmental Sustainability, Colorado State University, Fort Collins, Colorado

2. b Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, Netherlands

3. c Department of Anthropology and Geography, Colorado State University, Fort Collins, Colorado

4. d The Africa Center, Colorado State University, Fort Collins, Colorado

5. e Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, Colorado

6. f Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, Colorado

Abstract

Abstract Achievement of the United Nations Sustainable Development Goals (SDGs) is contingent on understanding the potential interactions among human and natural systems. In Kenya, the goal of conserving and expanding forest cover to achieve SDG 15 “Life on Land” may be related to other SDGs because it plays a role in regulating some aspects of Kenyan precipitation. We present a 40-yr analysis of the sources of precipitation in Kenya and the fate of the evaporation that arises from within Kenya. Using MERRA-2 climate reanalysis and the Water Accounting Model 2 layers, we examine the annual and seasonal changes in moisture sources and sinks. We find that most of Kenya’s precipitation originates as oceanic evaporation but that 10% of its precipitation originates as evaporation within Kenya. This internal recycling is concentrated in the mountainous and forested Kenyan highlands, with some locations recycling more than 15% of evaporation to Kenyan precipitation. We also find that 75% of Kenyan evaporation falls as precipitation elsewhere over land, including 10% in Kenya, 25% in the Democratic Republic of the Congo, and around 5% falling in Tanzania and Uganda. Further, we find a positive relationship between increasing rates of moisture recycling and fractional forest cover within Kenya. By beginning to understand both the seasonal and biophysical interactions taking place, we may begin to understand the types of leverage points that exist for integrated atmospheric water cycle management. These findings have broader implications for disentangling environmental management and conservation and have relevance for large-scale discussions about sustainable development.

Publisher

American Meteorological Society

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3