Missing Stratospheric Ozone Decrease at Southern Hemisphere Middle Latitudes after Mt. Pinatubo: A Dynamical Perspective

Author:

Poberaj C. Schnadt1,Staehelin J.1,Brunner D.2

Affiliation:

1. Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland

2. Empa Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland

Abstract

Abstract Although large total ozone decreases occurred in the Northern Hemisphere extratropics in the years after the volcanic eruption of Mt. Pinatubo that are generally attributed to the eruption, comparable decreases did not emerge in the Southern Hemisphere. To study this missing decrease, a multiple linear regression was applied to the Chemical and Dynamical Influences on Decadal Ozone Change (CANDIDOZ) Assimilated Three-Dimensional Ozone (CATO) dataset including the solar cycle, the quasi-biennial oscillation (QBO), the effect of volcanic eruptions, the lower stratospheric (LS) Eliassen–Palm (EP) flux to describe the Brewer–Dobson circulation, and stratospheric chlorine increase as explanatory variables. Volcanically induced chemical ozone depletion was overcompensated by the QBO and by a pronounced EP flux anomaly. Using NCEP–NCAR reanalysis data, it is found that the anomalous EP flux was caused by several significant stratospheric wave events (SWEs) from September–November 1991 through 1992 that, together with aerosol heating, led to a significantly enhanced Brewer–Dobson circulation and more ozone transport from the tropics to the extratropics. The onset of the volcanic ozone loss was shifted into 1992 and the strength of the signal was reduced. Most SWEs can be traced back to the troposphere and a significant fraction was associated with atmospheric blocking patterns preceding the SWEs. In 1991/92, the southern annular mode was in a negative phase and El Niño–Southern Oscillation in a warm phase. It is suggested that this constellation favored a flow preconditioning toward quasi-stationary features including blocking, which was significantly enhanced in 1991/92. During June–August 1992, blocking occurred preferably over the southeastern Pacific, pointing to a major ENSO influence on LS wave activity.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3