The Dry-Entropy Budget of a Moist Atmosphere

Author:

Romps David M.1

Affiliation:

1. Harvard University, Cambridge, Massachusetts

Abstract

Abstract The entropy budget has been a popular starting point for theories of the work, or dissipation, performed by moist atmospheres. For a dry atmosphere, the entropy budget provides a theory for the dissipation in terms of the imposed diabatic heat sources. For a moist atmosphere, the difficulties in quantifying irreversible moist processes or the value of the condensation temperature have so far frustrated efforts to construct a theory of dissipation. With this complication in mind, one of the goals here is to investigate the predictive power of the budget of dry entropy (i.e., the heat capacity times the logarithm of potential temperature). Toward this end, the dry-entropy budget is derived for an atmosphere with realistic heat capacities and a solid-water phase, features that were absent from some previous studies of atmospheric entropy. It is shown that the dry-entropy budget may be interpreted as the sum of sources and sinks from six processes, which are, in order of decreasing magnitude, radiative cooling, condensation heating, sensible heating at the surface, wind-generated frictional dissipation, lifting of water, and transport of heat from the melting line to the upper troposphere. This picture leads to an alternative explanation for the low efficiency of the moist atmospheric engine. Numerical simulations are presented from a new cloud-resolving model, Das Atmosphärische Modell, which was designed to conserve energy and close the dry-entropy budget. Simulations with and without subgrid diffusion of heat and water are compared to investigate the impact of subgrid parameterizations on the terms in the dry-entropy budget. The numerical results suggest a particularly simple parameterization of wind-generated dissipation that appears to be valid for changes in sea surface temperature and mean wind. The dry-entropy budget also points to various changes in forcings and parameterizations that could be expected to increase or decrease the wind-generated dissipation.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 78 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3