Meteorological Causes of the Secular Variations in Observed Extreme Precipitation Events for the Conterminous United States

Author:

Kunkel Kenneth E.1234,Easterling David R.2,Kristovich David A. R.3,Gleason Byron2,Stoecker Leslie3,Smith Rebecca3

Affiliation:

1. Cooperative Institute for Climate and Satellites North Carolina, North Carolina State University, Asheville, North Carolina

2. National Oceanic and Atmospheric Administration/National Climatic Data Center, Asheville, North Carolina

3. Illinois State Water Survey, Prairie Research Institute, University of Illinois at Urbana–Champaign, Champaign, Illinois

4. Division of Atmospheric Sciences, Desert Research Institute, Reno, Nevada

Abstract

Abstract Daily extreme precipitation events, exceeding a threshold for a 1-in-5-yr occurrence, were identified from a network of 935 Cooperative Observer stations for the period of 1908–2009. Each event was assigned a meteorological cause, categorized as extratropical cyclone near a front (FRT), extratropical cyclone near center of low (ETC), tropical cyclone (TC), mesoscale convective system (MCS), air mass (isolated) convection (AMC), North American monsoon (NAM), and upslope flow (USF). The percentage of events ascribed to each cause were 54% for FRT, 24% for ETC, 13% for TC, 5% for MCS, 3% for NAM, 1% for AMC, and 0.1% for USF. On a national scale, there are upward trends in events associated with fronts and tropical cyclones, but no trends for other meteorological causes. On a regional scale, statistically significant upward trends in the frontal category are found in five of the nine regions. For ETCs, there are statistically significant upward trends in the Northeast and east north central. For the NAM category, the trend in the West is upward. The central region has seen an upward trend in events caused by TCs.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 225 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3