Snow–Atmosphere Coupling Strength. Part II: Albedo Effect Versus Hydrological Effect

Author:

Xu Li1,Dirmeyer Paul2

Affiliation:

1. Department of Atmospheric, Oceanic and Earth Science, George Mason University, Fairfax, Virginia

2. Center for Ocean–Land–Atmosphere Studies, Calverton, Maryland

Abstract

Abstract In this study of snow–atmosphere coupling strength, the previous snow–atmosphere coupled modeling experiment is extended to investigate the separate impacts on the atmosphere of the radiatively driven snow albedo effect and the snow hydrological effect that operates through soil moisture, evapotranspiration, and precipitation feedbacks. The albedo effect is governed by snow cover fraction, while the hydrological effect is controlled by anomalies in snow water equivalent. Realistic snow cover from satellite estimates is prescribed and compared with model-generated values to isolate the snow albedo effect. Similarly, imparting realistic snow water equivalent from the Global Land Data Assimilation System in the model allows for estimation of the snow hydrological effect. The snow albedo effect is found to be active before, and especially during, the snowmelt period, and regions of strong albedo-driven coupling move northward during spring, with the retreating edge of the snowpack in the Northern Hemisphere. The snow hydrological effect appears first during snowmelt and can persist for months afterward. The contributing factors to the snow albedo effect are analyzed in a theoretical framework.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference29 articles.

1. A global 0.05° maximum albedo dataset of snow-covered land based on MODIS observations;Barlange;Geophys. Res. Lett.,2005

2. The determination of evaporation from the land surface;Budyko;Izv. Akad. Nauk SSSR, Ser. Geogr.,1961

3. The effect of snow cover on the climate;Cohen;J. Climate,1991

4. Land surface processes and climate-surface albedos and energy balance;Dickinson;Advances in Geophysics,1983

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3