Affiliation:
1. Met Office Hadley Centre, Exeter, United Kingdom
2. Department of Meteorology, University of Reading, United Kingdom
Abstract
Abstract
Multispectral Spinning Enhanced Visible and IR Interferometer (SEVIRI) data, calibrated with daily rain gauge estimates, were used to produce daily high-resolution rainfall estimates over Africa. An artificial neural network (ANN) approach was used, producing an output of satellite pixel–scale daily rainfall totals. This product, known as the Rainfall Intensity Artificial Neural Network African Algorithm (RIANNAA), was calibrated and validated using gauge data from the highland Oromiya region of Ethiopia. Validation was performed at a variety of spatial and temporal scales, and results were also compared against Tropical Applications of Meteorology Using Satellite Data (TAMSAT) single-channel IR-based rainfall estimates. Several versions of RIANNAA, with different combinations of SEVIRI channels as inputs, were developed. RIANNAA was an improvement over TAMSAT at all validation scales, for all versions of RIANNAA. However, the addition of multispectral data to RIANNAA only provided a statistically significant improvement over the single-channel RIANNAA at the highest spatial and temporal-resolution validation scale. It appears that multispectral data add more value to rainfall estimates at high-resolution scales than at averaged time scales, where the cloud microphysical information that they provide may be less important for determining rainfall totals than larger-scale processes such as total moisture advection aloft.
Publisher
American Meteorological Society
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献