An Artificial Neural Network Approach to Multispectral Rainfall Estimation over Africa

Author:

Chadwick Robin1,Grimes David2

Affiliation:

1. Met Office Hadley Centre, Exeter, United Kingdom

2. Department of Meteorology, University of Reading, United Kingdom

Abstract

Abstract Multispectral Spinning Enhanced Visible and IR Interferometer (SEVIRI) data, calibrated with daily rain gauge estimates, were used to produce daily high-resolution rainfall estimates over Africa. An artificial neural network (ANN) approach was used, producing an output of satellite pixel–scale daily rainfall totals. This product, known as the Rainfall Intensity Artificial Neural Network African Algorithm (RIANNAA), was calibrated and validated using gauge data from the highland Oromiya region of Ethiopia. Validation was performed at a variety of spatial and temporal scales, and results were also compared against Tropical Applications of Meteorology Using Satellite Data (TAMSAT) single-channel IR-based rainfall estimates. Several versions of RIANNAA, with different combinations of SEVIRI channels as inputs, were developed. RIANNAA was an improvement over TAMSAT at all validation scales, for all versions of RIANNAA. However, the addition of multispectral data to RIANNAA only provided a statistically significant improvement over the single-channel RIANNAA at the highest spatial and temporal-resolution validation scale. It appears that multispectral data add more value to rainfall estimates at high-resolution scales than at averaged time scales, where the cloud microphysical information that they provide may be less important for determining rainfall totals than larger-scale processes such as total moisture advection aloft.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3