What Controls the Mean Depth of the PBL?

Author:

Medeiros Brian1,Hall Alex1,Stevens Bjorn1

Affiliation:

1. Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Abstract

Abstract The depth of the planetary boundary layer (PBL) is a climatologically important quantity that has received little attention on regional to global scales. Here a 10-yr climatology of PBL depth from the University of California, Los Angeles (UCLA) atmospheric GCM is analyzed using the PBL mass budget. Based on the dominant physical processes, several PBL regimes are identified. These regimes tend to exhibit large-scale geographic organization. Locally generated buoyancy fluxes and static stability control PBL depth nearly everywhere, though convective mass flux has a large influence at tropical marine locations. Virtually all geographical variability in PBL depth can be linearly related to these quantities. While dry convective boundary layers dominate over land, stratocumulus-topped boundary layers are most common over ocean. This division of regimes leads to a dramatic land–sea contrast in PBL depth. Diurnal effects keep mean PBL depth over land shallow despite large daytime surface fluxes. The contrast arises because the large daily exchange of heat and mass between the PBL and free atmosphere over land is not present over the ocean, where mixing is accomplished by turbulent entrainment. Consistent treatment of remnant air from the deep, daytime PBL is necessary for proper representation of this diurnal behavior over land. Many locations exhibit seasonal shifts in PBL regime related to changes in PBL clouds. These shifts are controlled by seasonal variations in buoyancy flux and static stability.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference40 articles.

1. The Atlantic stratocumulus transition experiment—ASTEX.;Albrecht;Bull. Amer. Meteor. Soc.,1995

2. Interaction of a cumulus cloud ensemble with the large-scale environment, Part I.;Arakawa;J. Atmos. Sci.,1974

3. Preface to special issue on the Large-Scale Biosphere–Atmosphere Experiment in Amazonia (LBA).;Avissar;J. Geophys. Res.,2002

4. An evaluation of neutral and convective planetary boundary-layer parameterizations relative to large eddy simulations.;Ayotte;Bound.-Layer Meteor.,1996

5. Radiosonde boundary layer budgets above a boreal forest.;Barr;J. Geophys. Res.,1997

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3