Defining the Influence of Horizontal Grid Spacing on Ensemble Uncertainty within a Regional Modeling Framework

Author:

Dyer Jamie1,Zarzar Christopher1,Amburn Philip2,Dumais Robert3,Raby John3,Smith Jeffrey A.3

Affiliation:

1. Department of Geosciences, Mississippi State University, Mississippi State, Mississippi

2. Amburn Computer Enterprises, LLC, Tucson, Arizona

3. U.S. Army Research Laboratory, White Sands Missile Range, White Sands, New Mexico

Abstract

Abstract Numerical weather prediction (NWP) models are limited with respect to initial and boundary condition data and possess an incomplete description of underlying physical processes. To account for this, modelers have adopted the method of ensemble prediction to quantify the uncertainty within a model framework; however, the generation of ensemble members requires considerably more computational time and/or resources than a single deterministic simulation, especially at convection-allowing horizontal grid spacings. One approach to solving this issue is the development of both a large and small horizontal grid spacing model framework over the same domain for ensemble and deterministic simulations, respectively. This approach assumes that model grid spacing has no influence on model uncertainty; therefore, the objective of this paper is to quantify the influence of horizontal grid spacing on the statistical spread of NWP model ensembles over a regional domain. A series of 24-h simulations using the Weather Research and Forecast (WRF) Model are generated over a static domain with horizontal grid spacings of 35, 25, 15, and 9 km, using both a stochastic kinetic energy backscatter scheme and a multiphysics ensemble approach. Results indicate that horizontal grid spacing does influence the magnitude of uncertainty within an ensemble, although the exact magnitude and type of statistical relationship (direct versus inverse) varies by case. As such, at shorter lead times (<12 h) the dominant atmospheric process associated with each event and the type of ensemble being used outweigh the individual impacts of horizontal grid spacing on ensemble spread.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3