The Sensitivity of the Northeast Colorado Thunderstorm Environment to Upstream Surface Conditions

Author:

Grimaldi Richard T.1

Affiliation:

1. Earth Sciences Department, State University of New York at Oneonta, Oneonta, New York

Abstract

Abstract Statistical evidence supports a relationship between the warm-season thermodynamic environment in northeastern Colorado and the antecedent snow conditions in the upstream higher elevations. Above-normal snow storage and longevity reduces the sensible heating of the elevated terrain by increasing the albedo and exerting a stabilizing influence upon the surface layer. It follows that the residual spring snowpack of the Colorado Rockies represents an energy sink to the prevailing west to southwesterly winds of the free atmosphere, which traverse the uplift of the Western Plateau. The abrupt drop in elevation along the Front Range provides for a setting in which a thermal perturbation induced by mountain snow may be communicated to the downstream plains by cooling and perhaps stratifying the mobile elevated residual layer. Statistical and observational evidence suggest that the May and June months that follow a robust and extended snowmelt season are characterized by cooler 700-mb temperatures over Denver, Colorado. The apparent moist convective response to a positive snowmelt anomaly in the lee plains region is for severe weather to develop on average 45 to 50 min earlier, during May and June, than observed during seasons having a negative snow anomaly. Conversely, late springs, which harbor below-average snow, subject the elevated terrain to greater sensible heating. During the May and June months of these “low snow years,” 700-mb environmental conditions over Denver tend to be warmer and drier. Occurring in tandem with these trends are a reduction in May and June rainfall and a lower number of severe hail days on the lee plains. Observations further suggest that during low snow years substantial precipitation deficits extend to synoptic-scale distances downstream.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3