Collaborative Effects of Cold Surge and Tropical Depression–Type Disturbance on Heavy Rainfall in Central Vietnam

Author:

Yokoi Satoru1,Matsumoto Jun2

Affiliation:

1. Center for Climate System Research, University of Tokyo, Chiba, Japan

2. Department of Geography, Tokyo Metropolitan University, Tokyo, and Institute of Observational Research for Global Change, Japan Agency for Marine-Earth Science and Technology, Kanagawa, Japan

Abstract

Abstract This paper reveals synoptic-scale atmospheric conditions over the South China Sea (SCS) that cause heavy rainfall in central Vietnam through case study and composite analyses. The heavy rainfall event discussed in this study occurred on 2–3 November 1999. Precipitation in Hue city (central Vietnam) was more than 1800 mm for these 2 days. Two atmospheric disturbances played key roles in this heavy rainfall. First, a cold surge (CS) northerly wind anomaly in the lower troposphere, originating in northern China near 40°N, propagated southward to reach the northern SCS and then lingered there for a couple of days, resulting in stronger-than-usual northeasterly winds continuously blowing into the Indochina Peninsula against the Annam Range. Second, a southerly wind anomaly over the central SCS, associated with a tropical depression–type disturbance (TDD) in southern Vietnam, seemed to prevent the CS from propagating farther southward. Over the northern SCS, the southerly wind anomaly formed a strong low-level convergence in conjunction with the CS northeasterly wind anomaly, and supplied warm and humid tropical air. These conditions induced by the CS and TDD are favorable for the occurrence of the heavy orographic rainfall in central Vietnam. The TDD can be regarded as a result of a Rossby wave response to a large-scale convective anomaly over the Maritime Continent associated with equatorial intraseasonal variability. Using a 24-yr (1979–2002) reanalysis and surface precipitation datasets, the authors confirm that the coexistence of the CS and TDD is important for the occurrence of heavy precipitation in central Vietnam. In addition, it is observed that CSs without a TDD do not lead to much precipitation.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3