Orographic Modification of Convection and Flow Kinematics by the Oregon Coast Range and Cascades during IMPROVE-2

Author:

Colle Brian A.,Lin Yanluan,Medina Socorro,Smull Bradley F.

Abstract

This paper describes the kinematic and precipitation evolution accompanying the passage of a cold baroclinic trough over the Central Oregon Coast Range and Cascades during 4–5 December 2001 of the second Improvement of Microphysical Parameterization through Observational Verification Experiment (IMPROVE-2) field project. In contrast to previously documented IMPROVE-2 cases, the 4–5 December event featured weaker cross-barrier winds (15–20 m s−1), weaker moist static stability (Nm < 0.006 s−1), and convective cells that preferentially intensified over Oregon’s modest coastal mountain range. These cells propagated eastward and became embedded within the larger orographic precipitation shield over the windward slopes of the Cascades. The Weather Research and Forecasting Model (version 2.2) at 1.33-km grid spacing was able to accurately replicate the observed evolution of the precipitation across western Oregon. As a result of the convective cell development, the precipitation enhancement over the Coast Range (500–1000 m MSL) was nearly as large as that over the Cascades (1500–2000 m MSL). Simulations selectively eliminating the elevated coastal range and differential land–sea friction across the Pacific coastline illustrate that both effects were important in triggering convection and in producing the observed coastal precipitation enhancement. A sensitivity run employing a smoothed representation of the Cascades illustrates that narrow ridges located on that barrier’s windward slope had a relatively small (<5%) impact on embedded convection and overall precipitation amounts there. This is attributed to the relatively weak gravity wave motions and low freezing level, which limited precipitation growth by riming.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3