Affiliation:
1. Naval Research Laboratory, Monterey, California
Abstract
Abstract
A suite of high-resolution two-dimensional ensemble simulations are used to investigate the predictability of mountain waves, wave breaking, and downslope windstorms. For relatively low hills and mountains, perturbation growth is weak and ensemble spread is small. Gravity waves and wave breaking associated with higher mountains exhibit rapid perturbation growth and large ensemble variance. Near the regime boundary between mountain waves and wave breaking, a bimodal response is apparent with large ensemble variance. Several ensemble members exhibit a trapped wave response and others reveal a hydraulic jump and large-amplitude breaking in the stratosphere. The bimodality of the wave response brings into question the appropriateness of commonly used ensemble statistics, such as the ensemble mean, in these situations. Small uncertainties in the initial state within observational error limits result in significant ensemble spread in the strength of the downslope wind speed, wave breaking, and wave momentum flux. These results indicate that the theoretical transition across the regime boundary for gravity wave breaking can be interpreted as a finite-width or blurred transition zone from a practical predictability standpoint.
Publisher
American Meteorological Society
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献