Comparison of a 51-Member Low-Resolution (TL399L62) Ensemble with a 6-Member High-Resolution (TL799L91) Lagged-Forecast Ensemble

Author:

Buizza Roberto1

Affiliation:

1. European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom

Abstract

Abstract The 51-member TL399L62 ECMWF ensemble prediction system (EPS51) is compared with a lagged ensemble system based on the six most recent ECMWF TL799L91 forecasts (LAG6). The EPS51 and LAG6 systems are compared to two 6-member ensembles with a “weighted” ensemble-mean: EPS6wEM and LAG6wEM. EPS6wEM includes six members of EPS51 and has the ensemble mean constructed giving optimal weights to its members, while LAG6wEM includes the LAG6 six members and has the ensemble mean constructed giving optimal weights to its members. In these weighted ensembles, the optimal weights are based on 50-day forecast error statistics of each individual member (in EPS51 and LAG6 the ensemble mean is constructed giving the same weight to each individual member). The EPS51, LAG6, EPS6wEM, and LAG6wEM ensembles are compared for a 7-month period (from 1 April to 30 October 2006—213 cases) and for two of the most severe storms that hit the Scandinavian countries since 1969. The study shows that EPS51 has the best-tuned ensemble spread, and provides the best probabilistic forecasts, with differences in predictability between EPS51 and LAG6 or LAG6wEM probabilistic forecasts of geopotential height anomalies of up to 24 h. In terms of ensemble mean, EPS51 gives the best forecast from forecast day 4, but before forecast day 4 LAG6wEM provides a slightly better forecast, with differences in predictability smaller than 2 h up to forecast day 6, and of about 6 h afterward. The comparison also shows that a larger ensemble size is more important in the medium range rather than in the short range. Overall, these results indicate that if the aim of ensemble prediction is to generate not only a single (most likely) scenario but also a probabilistic forecast, than EPS51 has a higher skill than the lagged ensemble system based on LAG6 or LAG6wEM.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3