Climatology and Changes of Extratropical Cyclone Activity: Comparison of ERA-40 with NCEP–NCAR Reanalysis for 1958–2001

Author:

Wang Xiaolan L.1,Swail Val R.1,Zwiers Francis W.1

Affiliation:

1. Climate Research Division, Atmospheric Science and Technology Directorate, Environment Canada, Toronto, Ontario, Canada

Abstract

Abstract In this study, a cyclone detection/tracking algorithm was used to identify cyclones from two gridded 6-hourly mean sea level pressure datasets: the 40-yr ECMWF Re-Analysis (ERA-40) and the NCEP–NCAR reanalysis (NNR) for 1958–2001. The cyclone activity climatology and changes inferred from the two reanalyses are intercompared. The cyclone climatologies and trends are found to be in reasonably good agreement with each other over northern Europe and eastern North America, while ERA-40 shows systematically stronger cyclone activity over the boreal extratropical oceans than does NNR. However, significant differences between ERA-40 and NNR are seen over the austral extratropics. In particular, ERA-40 shows significantly greater strong-cyclone activity and less weak-cyclone activity over all oceanic areas south of 40°S in all seasons, while it shows significantly stronger cyclone activity over most areas of the austral subtropics in the warm seasons. The most notable historical trends in cyclone activity are found to be associated with strong-cyclone activity. Over the boreal extratropics, both ERA-40 and NNR show a significant increasing trend in January–March (JFM) strong-cyclone activity over the high-latitude North Atlantic and over the midlatitude North Pacific, with a significant decreasing trend over the midlatitude North Atlantic and a small increasing trend over northern Europe. The JFM changes over the North Atlantic are associated with the mean position of the storm track shifting about 181 km northward. Importantly, there is no evidence of abrupt changes identified for the boreal extratropics, although previous studies have suggested that the upward trend found in the NNR data could be biased high. However, there exist a few abrupt changes over the austral extratropics, which appear to be attributable to the increasing availability of observations assimilated in the reanalyses. After diminishing the effects of these abrupt changes, strong-cyclone activity over the austral circumpolar oceanic region is identified to have an increasing trend in October–December (OND) and July–September (JAS), with a decreasing trend over the 40°–60°S zone in JAS.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 230 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3