On the Role of Resonant Interactions in the Short-Term Evolution of Deep-Water Ocean Spectra

Author:

Tanaka Mitsuhiro1

Affiliation:

1. Department of Mathematical and Design Engineering, Faculty of Engineering, Gifu University, Gifu, Japan

Abstract

Abstract The temporal evolution of the energy spectrum of a field of random surface gravity waves in deep water is investigated by means of direct numerical simulations of the deterministic primitive equations. The detected rate of change of the spectrum is shown to be proportional to the cubic power of the energy density and to agree very well with the nonlinear energy transfer Snl as predicted by Hasselmann. Despite the fact that use of various asymptotic relations that are valid only for t → ∞ or integration with respect to time over a time scale much longer than O[period × (ak)−2] is necessary in the derivation of Hasselmann’s Snl, it is clearly demonstrated that the rate of change of the spectrum given by the numerical simulation agrees very well with Hasselmann’s Snl at every instance of ordinary time scale comparable to the period. The result implies that the four-wave resonant interactions control the evolution of the spectrum at every instant of time, whereas nonresonant interactions do not make any significant contribution even in a short-term evolution. It is also pointed out that the result may call for a reexamination of the process of derivation of the kinetic equation for the spectrum.

Publisher

American Meteorological Society

Subject

Oceanography

Reference19 articles.

1. Role of non-resonant interactions in evolution of nonlinear random water wave fields.;Annenkov;J. Fluid Mech.,2006

2. Spectral Methods in Fluid Dynamics.;Canuto,1988

3. A high-order spectral method for the study of nonlinear gravity waves.;Dommermuth;J. Fluid Mech.,1987

4. Directional spectra of wind-generated waves.;Donelan;Philos. Trans. Roy. Soc. London,1985

5. On the non-linear energy transfer in a gravity-wave spectrum. Part 1. General theory.;Hasselmann;J. Fluid Mech.,1962

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3