Phased-Array Design for Biological Clutter Rejection: Simulation and Experimental Validation

Author:

Cheong B. L.1,Hoffman M. W.2,Palmer R. D.1,Frasier Stephen J.3,López-Dekker F. J.3

Affiliation:

1. School of Meteorology, University of Oklahoma, Norman, Oklahoma

2. Department of Electrical Engineering, University of Nebraska, Lincoln, Nebraska

3. Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, Massachusetts

Abstract

Abstract This paper highlights recent results obtained with the Turbulent Eddy Profiler (TEP), which was developed by the University of Massachusetts. This unique 915-MHz radar has up to 64 spatially separated receiving elements, each with an independent receiver. The calibrated raw data provided by this array could be processed using sophisticated imaging algorithms to resolve the horizontal structures within each range gate. After collecting all of the closely spaced horizontal slices, the TEP radar can produce three-dimensional images of echo power, radial velocity, and spectral width. From the radial velocity measurements, it is possible to estimate the three-dimensional wind with high horizontal and vertical resolution. Given the flexibility of the TEP system, various array configurations are possible. In the present work exploitation of the flexibility of TEP is attempted to enhance the rejection of clutter from unwanted biological targets. From statistical studies, most biological clutter results from targets outside the main imaging field of view, that is, the sidelobes and grating lobes (if they exist) of the receiving beam. Because the TEP array's minimum receiver separation exceeds the spatial Nyquist sampling requirement, substantial possibilities for grating-lobe clutter exist and are observed in actual array data. When imaging over the transmit beam volume, the receiving array main lobe is scanned over a ±12.5° region. This scanning also sweeps the grating lobes over a wide angular region, virtually guaranteeing that a biological scatterer outside of the main beam will appear somewhere in the imaged volume. This paper focuses on suppressing pointlike targets in the grating-lobe regions. With a subtle change to the standard TEP array hardware configuration, it is shown via simulations and actual experimental observations (collected in June 2003) that adaptive beamforming methods can subsequently be used to significantly suppress the effects of point targets on the wind field estimates. These pointlike targets can be birds or planes with strong reflectivity. By pointlike the authors mean its appearance is a distinct point (up to the imaging resolution) in the images. The pointlike strong reflectivity signature exploits the capability of adaptive beamforming to suppress the interference using the new array configuration. It should be noted that this same array configuration does not exhibit this beneficial effect when standard Fourier beamforming is employed.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Aerial clutter suppression in a wind profiler radar with antenna subarrays;IEEE Transactions on Geoscience and Remote Sensing;2021

2. Facility implementation of adaptive clutter suppression to an existing wind profiler radar: First result;IEICE Communications Express;2017

3. Atmospheric Radar;2016

4. Development of a digital receiver for range imaging atmospheric radar;Journal of Atmospheric and Solar-Terrestrial Physics;2014-10

5. Radar Observations of Precipitation;Radar for Meteorological and Atmospheric Observations;2013-05-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3