Affiliation:
1. National Oceanography Centre, Southampton, Southampton, United Kingdom
Abstract
Abstract
Wave-breaking dissipation is one of the least understood processes implemented in contemporary wave models. Significant effort has been put in its parameterization, but it has not proven to be totally satisfactory, either theoretically or practically. In this work, the WAVEWATCH III (version 2.22; Tolman) wave model is used to evaluate the two wind input/dissipation source term packages that it includes: (i) Wave Model (WAM) cycle 3 (WAMDIG) and (ii) Tolman and Chalikov. Global model outputs were obtained under the same wind forcing for the two dissipation formulations and were collocated in space and time in the north Indian Ocean with Ocean Topography Experiment (TOPEX) altimeter data. The performance of the model was assessed by evaluating the statistical behavior of the collocated datasets. The parameters examined were significant wave height, wind speed, wind direction, wave direction, wave height for fully developed seas, and energy loss due to wave breaking. From the results, the behavior of the input/dissipation formulations in specific wind and wave conditions was identified; that is, the results give insight to the way the two source term packages “work” and how they respond to local wind sea or swell. Specifically, both of the packages were unable to perform adequately during a season when the area can be mostly affected by swell. However, the results confirmed that the examination of only integral spectral wave parameters does not give information on the inherent physical characteristics of the formulations. Further study, on the basis of point spectra, is necessary to examine the formulations’ performance across the wave spectrum.
Publisher
American Meteorological Society
Reference51 articles.
1. Two-phase behaviour of the spectral dissipation of wind waves.;Babanin,2005
2. Breaking probabilities for dominant surface waves on water of finite constant depth.;Babanin;J. Geophys. Res.,2001
3. Implementation of new experimental input/dissipation terms for modeling spectral evolution of wind waves.;Babanin,2007
4. Spectral dissipation term for wave forecast models, experimental study.;Babanin,2007
5. Breaking probability of dominant waves on the sea surface.;Banner;J. Phys. Oceanogr.,2000
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献