Divergent versus Nondivergent Instabilities of Piecewise Uniform Shear Flows on the f Plane

Author:

Paldor Nathan1,Dvorkin Yona2,Heifetz Eyal3

Affiliation:

1. Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel

2. Geological Survey of Israel, Jerusalem, Israel

3. Department of Geophysics and Planetary Sciences, Tel Aviv University, Tel Aviv, Israel

Abstract

Abstract The linear instability of a piecewise uniform shear flow is classically formulated for nondivergent perturbations on a 2D barotropic mean flow with linear shear, bounded on both sides by semi-infinite half-planes where the mean flows are uniform. The problem remains unchanged on the f plane because for nondivergent perturbations the instability is driven by vorticity gradient at the edges of the inner, linear shear region, whereas the vorticity itself does not affect it. The instability of the unbounded case is recovered when the outer regions of uniform velocity are bounded, provided that these regions are at least twice as wide as the inner region of nonzero shear. The numerical calculations demonstrate that this simple scenario is greatly modified when the perturbations’ divergence and the variation of the mean height (which geostrophically balances the mean flow) are retained in the governing equations. Although a finite deformation radius exists on the shallow water f plane, the mean vorticity gradient that governs the instability in the nondivergent case remains unchanged, so it is not obvious how the instability is modified by the inclusion of divergence in the numerical solutions of the equations. The results here show that the longwave instability of nondivergent flows is recovered by the numerical solution for divergent flows only when the radius of deformation is at least one order of magnitude larger than the width of the inner uniform shear region. Nevertheless, even at this large radius of deformation both the amplitude of the velocity eigenfunction and the distribution of vorticity and divergence differ significantly from those of nondivergent perturbations and vary strongly in the cross-stream direction. Whereas for nondivergent flows the vorticity and divergence both have a delta-function structure located at the boundaries of the inner region, in divergent flows they are spread out and attain their maximum away from the boundaries (either in the inner region or in the outer regions) in some range of the mean shear. In contrast to nondivergent flows for which the mean shear is merely a multiplicative factor of the growth rates, in divergent flows new unstable modes exist for sufficiently large mean shear with no shortwave cutoff. This unstable mode is strongly affected by the sign of the mean shear (i.e., the sign of the mean relative vorticity).

Publisher

American Meteorological Society

Subject

Oceanography

Reference16 articles.

1. Shear instability in shallow water.;Balmforth;J. Fluid Mech.,1999

2. Stability of inviscid plane Couette flow.;Case;Phys. Fluids,1960

3. Introduction to Geophysical Fluid Dynamics.;Cushman-Roisin,1994

4. Hydrodynamic Stability.;Drazin,1981

5. Optimal excitation of perturbations in viscous shear flow.;Farrell;Phys. Fluids,1988

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3