Affiliation:
1. Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
Abstract
Abstract
This article aims to advance the understanding of inherent randomness in geophysical fluids by considering the particular example of baroclinic shear flows that are spatially uniform in the horizontal directions and aperiodic in time. The time variability of the shear is chosen to be the Kubo oscillator, which is a family of time-dependent bounded noise that is oscillatory in nature with various degrees of stochasticity.
The author analyzed the linear stability of a wide range of temporally periodic and aperiodic shears with a zero and nonzero mean to get a more complete understanding of the effect of oscillations in shear flows in the context of the two-layer quasigeostrophic Phillips model. It is determined that the parametric mode, which exists in the periodic limit, also exists in the range of small and moderate stochasticities but vanishes in highly erratic flows. Moreover, random variations weaken the effects of periodicity and yield growth rates more similar to that of the time-averaged steady-state analog. This signifies that the periodic shear flows possess the most extreme case of stabilization and destabilization and are thus anomalous. In the limit of an f plane, the linear stability problem is solved exactly to reveal that individual solutions to the linear dynamics with time-dependent baroclinic shear have growth rates that are equal to that of the time-averaged steady state. This implies that baroclinic shear flows with zero means are linearly stable in that they do not grow exponentially in time. This means that the stochastic mode that was found to exist in the Mathieu equation does not arise in this model. However, because the perturbations grow algebraically, the aperiodic baroclinic shear on an f plane can give rise to nonlinear instabilities.
Publisher
American Meteorological Society
Reference38 articles.
1. Mathematical Methods of Classical Mechanics.;Arnold,1989
2. The stability of the plane free surface of a liquid in a vertical periodic motion.;Benjamin;Proc. Roy. Soc. London,1954
3. Baroclinic instability of two-layer flows over one-dimensional bottom topography.;Benlov;J. Phys. Oceanogr.,2001
4. Theory of Differential Equations.;Coddington,1955
5. Normal-mode instabilities of a time-dependent coastal upwelling jet.;Durski;J. Phys. Oceanogr.,2008
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献