Trade Wind Cloud Evolution Observed by Polarization Radar: Relationship to Giant Condensation Nuclei Concentrations and Cloud Organization

Author:

Minor Hilary A.1,Rauber Robert M.1,Göke Sabine1,Di Girolamo Larry1

Affiliation:

1. Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

Abstract

Abstract Shallow marine trade wind cumuli are one of the most prevalent cloud types in the tropical atmosphere. Understanding how precipitation forms within these clouds is necessary to advance our knowledge concerning their role in climate. This paper presents a statistical analysis of the characteristic heights and times at which precipitation in trade wind clouds passes through distinct stages in its evolution as defined by the equivalent radar reflectivity factor at horizontal polarization ZH, the differential reflectivity ZDR, and the spatial correlation between and averages of these variables. The data were obtained during the Rain in Cumulus over the Ocean (RICO) field campaign by the National Center for Atmospheric Research (NCAR) S-band dual-polarization (S-Pol) Doppler radar, the National Science Foundation (NSF)–NCAR C130 aircraft, and soundings launched near the radar. The data consisted of 76 trade cumuli that were tracked from early echo development through rainout on six days during RICO. Trade wind clouds used in the statistical analyses were segregated based on giant condensation nuclei (GCN) measurements made during low-level aircraft flight legs on the six days. This study found that the rate of precipitation formation in shallow marine cumulus was unrelated to the GCN concentration in the ambient environment. Instead, the rate at which precipitation developed in the clouds appeared to be related to the mesoscale forcing as suggested by the cloud organization. Although GCN had no influence on the rate of precipitation development, the data suggest that they do contribute to a modification of the rain drop size distribution within the clouds. With very few exceptions, high threshold values of ZDR were found well above cloud base on days with high GCN concentrations. On the days that were exceptions, these threshold values were almost always achieved near cloud base.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3