Equatorial Mountain Torques and Cold Surge Preconditioning

Author:

Mailler Sylvain1,Lott François2

Affiliation:

1. Laboratoire de Météorologie Dynamique du CNRS, Paris, and École Nationale des Ponts et Chaussées, Marne la Vallée, France

2. Laboratoire de Météorologie Dynamique du CNRS, Paris, France

Abstract

Abstract The evolution of the two components of the equatorial mountain torque (EMT) applied by mountains on the atmosphere is analyzed in the NCEP reanalysis. A strong lagged relationship between the EMT component along the Greenwich axis TM1 and the EMT component along the 90°E axis TM2 is found, with a pronounced signal on TM1 followed by a signal of opposite sign on TM2. It is shown that this result holds for the major massifs (Antarctica, the Tibetan Plateau, the Rockies, and the Andes) if a suitable axis system is used for each of them. For the midlatitude mountains, this relationship is in part associated with the development of cold surges. Following these results, two hypotheses are made: (i) the mountain forcing on the atmosphere is well measured by the regional EMTs and (ii) this forcing partly drives the cold surges. To support these, a purely dynamical linear model is proposed: it is written on the sphere, uses an f-plane quasigeostrophic approximation, and includes the mountain forcings. In this model, a positive (negative) peak in TM1 produced by a mountain massif in the Northern (Southern) Hemisphere is due to a large-scale high surface pressure anomaly poleward of the massif. At a later stage, high pressure and low temperature anomalies develop in the lower troposphere east of the mountain, explaining the signal on TM2 and providing the favorable conditions for the cold surge development. It is concluded that the EMT is a good measure of the dynamical forcing of the atmospheric flow by the mountains and that the poleward forces exerted by mountains on the atmosphere are substantial drivers of the cold surges, at least in their early stage. Therefore, the EMT time series can be an important diagnostic to assess the representation of mountains in general circulation models.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference46 articles.

1. Mountain pressure drag during PYREX.;Bessemoulin;Beitr. Phys. Atmos.,1993

2. Critical layer instability in baroclinic flows.;Bretherton;Quart. J. Roy. Meteor. Soc.,1966

3. Resolution dependence of orographic torques.;Brown;Quart. J. Roy. Meteor. Soc.,2004

4. Cyclogenesis in the lee of the Alps: A case study.;Buzzi;Quart. J. Roy. Meteor. Soc.,1978

5. Northeasterly cold surges and near-equatorial disturbances over the winter MONEX area during December 1974. Part II: Planetary-scale aspects.;Chang;Mon. Wea. Rev.,1980

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3