Large-Eddy Observation of Post-Cold-Frontal Continental Stratocumulus

Author:

Mechem David B.1,Kogan Yefim L.2,Schultz David M.3

Affiliation:

1. Atmospheric Science Program, Department of Geography, University of Kansas, Lawrence, Kansas

2. Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma

3. Division of Atmospheric Sciences and Geophysics, Department of Physics, University of Helsinki, and Finnish Meteorological Institute, Helsinki, Finland, and Centre for Atmospheric Sciences, School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Manchester, United Kingdom

Abstract

Abstract More studies on the dynamics of marine stratus and stratocumulus clouds have been performed than comparable studies on continental stratocumulus. Therefore, to increase the number of observations of continental stratocumulus and to compare marine and continental stratocumulus to each other, the approach of large-eddy observation (LEO) was applied to a case of nocturnal continental stratocumulus observed over the Atmospheric Radiation Measurement Program (ARM) Climate Research Facility (ACRF) in the central United States on 8 April 2006. The stratocumulus occurred in cold-air and dry-air advection behind a surface cold front. LEOs were obtained from millimeter-wavelength cloud radar and micropulse lidar, whereas traditional meteorological observations described the synoptic environment. This study focuses on a 9-h period of a predominantly nonprecipitating stratocumulus layer 250–400 m thick. A slight thinning of the cloud layer over time is consistent with dry-air advection. A deep layer of descent overlaid a shallower layer of ascent from the surface up to 800 mb, providing a mechanism for strengthening the inversion at cloud top. Time series of Doppler velocity indicate vertically coherent structures identifiable throughout much of the cloud layer. The magnitude of turbulence, as indicated by the variance of the vertical velocity, was weak relative to typical marine stratocumulus and to the one other case of continental stratocumulus in the literature. Conditional sampling of the eddy structures indicate that strong downdrafts were more prevalent than strong updrafts, and negative skewness of vertical velocity in the cloud implies an in-cloud circulation driven by longwave cooling at cloud top, similar to that in marine stratocumulus.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3