Comparisons of CCN with Supercooled Clouds

Author:

Hudson James G.1,Noble Stephen1,Jha Vandana1

Affiliation:

1. Desert Research Institute, Reno, Nevada

Abstract

Abstract More than 140 supercooled clouds were compared with corresponding out-of-cloud cloud condensation nuclei (CCN) measurements. In spite of significant differences in altitude, temperature, distances from cloud base, updraft velocity (W), entrainment, and so on, the correlation coefficients (R) between droplet and CCN concentrations were substantial although not as high as those obtained in warm clouds with less variability of nonaerosol influences. CCN at slightly lower altitudes than the clouds had higher R values than CCN measured at the same altitude. Ice particle concentrations appeared to reduce droplet concentrations and reduce R between CCN and droplet concentrations, but only above 6-km altitude and for temperatures below −20°C. Although higher CCN concentrations generally resulted in higher droplet concentrations, increases in droplet concentrations were generally less than the increases in CCN concentrations. This was apparently due to the expected lower cloud supersaturations (S) when CCN concentrations are higher as was usually the case at lower altitudes. Cloud supersaturations showed more variability at higher altitudes and often very high values at higher altitudes. The use of liquid water content rather than droplet concentrations for cloud threshold resulted in higher R between CCN and droplet concentrations. The same R pattern for cumulative droplet–CCN concentrations as a function of threshold droplet sizes as that recently uncovered in warm clouds was found. This showed R changing rapidly from positive values when all cloud droplets were considered to negative values for slightly larger droplet size thresholds. After reaching a maximum negative value at intermediate droplet sizes, R then reversed direction to smaller negative or even positive values for larger cloud droplet size thresholds. This R pattern of CCN concentrations versus cumulative droplet concentrations for increasing size thresholds is consistent with adiabatic model predictions and thus suggests even greater CCN influence on cloud microphysics.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3