Effect of Tropical Waves on the Tropical Tropopause Transition Layer Upwelling

Author:

Ryu Jung-Hee1,Lee Sukyoung1

Affiliation:

1. Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Abstract

Abstract An initial-value problem is employed with a GCM to investigate the role of the convectively driven Rossby and Kelvin waves for tropopause transition layer (TTL) upwelling in the tropics. The convective heating is mimicked with a prescribed heating field, and the Lagrangian upwelling is identified by examining the evolution of passive tracer fields whose initial distribution is identical to the initial heating field. This study shows that an overturning circulation, induced by the tropical Rossby waves, is capable of generating the TTL upwelling. Even when the heating is placed in the eastern Pacific, the TTL upwelling occurs only over the western tropical Pacific, indicating that the background flow plays a crucial role. The results from a Rossby wave source analysis suggest that a key feature of the background flow is the strong absolute vorticity gradient associated with the Asian subtropical jet. In addition, static stability is relatively weak over the western Pacific, suggesting that this may also contribute to the TTL upwelling in that region. The background flow also modulates the internal Kelvin waves in such a manner that the coldest region in the TTL (resembling the observed “cold trap”) occurs over the western tropical Pacific. As a consequence, the upwelling air, induced by the meridional momentum flux of the Rossby wave, passes through the cold trap generated by the Kelvin wave. Since in reality the background flow is shaped by the convective heating, the climatological western tropical Pacific heating is ultimately responsible for both the TTL upwelling and the cold trap; however, both processes are realized indirectly through its impact on the background flow and the generation of the tropical waves.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3