Affiliation:
1. Department of Meteorology, University of Reading, Reading, United Kingdom
Abstract
AbstractWhen a forecast is assessed, a single value for a verification measure is often quoted. This is of limited use, as it needs to be complemented by some idea of the uncertainty associated with the value. If this uncertainty can be quantified, it is then possible to make statistical inferences based on the value observed. There are two main types of inference: confidence intervals can be constructed for an underlying “population” value of the measure, or hypotheses can be tested regarding the underlying value. This paper will review the main ideas of confidence intervals and hypothesis tests, together with the less well known “prediction intervals,” concentrating on aspects that are often poorly understood. Comparisons will be made between different methods of constructing confidence intervals—exact, asymptotic, bootstrap, and Bayesian—and the difference between prediction intervals and confidence intervals will be explained. For hypothesis testing, multiple testing will be briefly discussed, together with connections between hypothesis testing, prediction intervals, and confidence intervals.
Publisher
American Meteorological Society
Cited by
93 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献