Anelastic and Compressible Simulation of Moist Dynamics at Planetary Scales

Author:

Kurowski Marcin J.1,Grabowski Wojciech W.2,Smolarkiewicz Piotr K.3

Affiliation:

1. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

2. National Center for Atmospheric Research,* Boulder, Colorado

3. European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom

Abstract

Abstract Moist anelastic and compressible numerical solutions to the planetary baroclinic instability and climate benchmarks are compared. The solutions are obtained by applying a consistent numerical framework for discrete integrations of the various nonhydrostatic flow equations. Moist extension of the baroclinic instability benchmark is formulated as an analog of the dry case. Flow patterns, surface vertical vorticity and pressure, total kinetic energy, power spectra, and total amount of condensed water are analyzed. The climate benchmark extends the baroclinic instability study by addressing long-term statistics of an idealized planetary equilibrium and associated meridional transports. Short-term deterministic anelastic and compressible solutions differ significantly. In particular, anelastic baroclinic eddies propagate faster and develop slower owing to, respectively, modified dispersion relation and abbreviated baroclinic vorticity production. These eddies also carry less kinetic energy, and the onset of their rapid growth occurs later than for the compressible solutions. The observed differences between the two solutions are sensitive to initial conditions as they diminish for large-amplitude excitations of the instability. In particular, on the climatic time scales, the anelastic and compressible solutions evince similar zonally averaged flow patterns with the matching meridional transports of entropy, momentum, and moisture.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3