Impact of Swell on Air–Sea Momentum Flux and Marine Boundary Layer under Low-Wind Conditions

Author:

Jiang Qingfang1,Sullivan Peter2,Wang Shouping1,Doyle James1,Vincent Linwood3

Affiliation:

1. Naval Research Laboratory, Monterey, California

2. National Center for Atmospheric Research, Boulder, Colorado

3. UCAR Visiting Scientist Programs, Monterey, California

Abstract

Abstract The impact of fast-propagating swell on the air–sea momentum exchange and the marine boundary layer is examined based on multiple large-eddy simulations over a range of wind speed and swell parameters in the light-wind–fast-wave regime. A wave-driven supergeostrophic jet forms near the top of the wave boundary layer when the forwarding-pointing (i.e., negative) form drag associated with fast wind-following swell overpowers the positive surface shear stress. The magnitude of the form drag increases with the wavelength and slope and decreases with increasing wind speed, and the jet intensity in general increases with the magnitude of the surface form drag. The resulting negative vertical wind shear above the jet in turn enhances the turbulence aloft. The level of the wind maximum is found to be largely determined by the wavenumber and the ratio of the surface shear stress and form drag: the larger the magnitude of this ratio, the higher the altitude of the wind maximum. Although the simulated wind profile often closely follows the log law in the wave boundary layer, the surface stress derived from the logarithmic wind profile is significantly larger than the actual total surface stress in the presence of swell. Therefore, the Monin–Obukhov similarity theory is generally invalid over swell-dominated ocean. This is attributed to the wave-induced contribution to momentum flux, which decays roughly exponentially in the vertical and is largely independent of local wind shear.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference30 articles.

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3