Delineating the Barotropic and Baroclinic Mechanisms in the Midlatitude Eddy-Driven Jet Response to Lower-Tropospheric Thermal Forcing

Author:

Nie Yu1,Zhang Yang1,Chen Gang2,Yang Xiu-Qun1

Affiliation:

1. Institute for Climate and Global Change Research, and Jiangsu Collaborative Innovation Center for Climate Change, School of Atmospheric Sciences, Nanjing University, Nanjing, China

2. Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, New York

Abstract

Abstract Observations and climate models have shown that the midlatitude eddy-driven jet can exhibit an evident latitudinal shift in response to lower-tropospheric thermal forcing (e.g., the tropical SST warming during El Niño or extratropical SST anomalies associated with the atmosphere–ocean–sea ice coupling). In addition to the direct thermal wind response, the eddy feedbacks—including baroclinic mechanisms, such as lower-level baroclinic eddy generation, and barotropic mechanisms, such as upper-level wave propagation and breaking—can all contribute to the atmospheric circulation response to lower-level thermal forcing, but their individual roles have not been well explained. In this study, using a nonlinear β-plane multilevel quasigeostrophic channel model, the mechanisms through which the lower-level thermal forcing induces the jet shift are investigated. By diagnosing the finite-amplitude wave activity budget, the baroclinic and barotropic eddy feedbacks to the lower-level thermal forcing are delineated. Particularly, by examining the transient circulation response after thermal forcing is switched on, it is shown that the lower-level thermal forcing affects the eddy-driven jet rapidly by modifying the upper-level zonal thermal wind distribution and the associated meridional wave propagation and breaking. The anomalous baroclinic eddy generation, however, acts to enhance the latitudinal shift of the eddy-driven jet only in the later stage of transient response. Furthermore, the barotropic mechanism is explicated by overriding experiments in which the barotropic flow in the vorticity advection is prescribed. Unlike the conventional baroclinic view, the barotropic eddy feedback, particularly the irreversible PV mixing through barotropic vorticity advection and deformation, plays a major role in the atmospheric circulation response to the lower-level thermal forcing.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3