Assessing the Equatorial Long-Wave Approximation: Asymptotics and Observational Data Analysis*

Author:

Ogrosky H. Reed1,Stechmann Samuel N.2

Affiliation:

1. Department of Mathematics, University of Wisconsin–Madison, Madison, Wisconsin

2. Department of Mathematics, and Department of Atmospheric and Oceanic Sciences, University of Wisconsin–Madison, Madison, Wisconsin

Abstract

Abstract Equatorial long-wave theory applies where a small horizontal aspect ratio between meridional and zonal length scales is assumed. In an idealized setting, the theory suggests that (i) meridional wind is small, (ii) geostrophic balance holds in the meridional direction, and (iii) inertio-gravity waves are small in amplitude or “filtered out.” In this paper a spectral data analysis method is used to quantitatively assess the spatial and temporal scales on which each of these aspects of long-wave dynamics is observed in reanalysis data. Three different perspectives are used in this assessment: primitive variables, characteristic variables, and wave variables. To define each wave variable, the eigenvectors and theoretical wave structures of the equatorial shallow-water equations are used. Evidence is presented that the range of spatial and temporal scales on which long-wave dynamics holds depends on which aspect of the dynamics is considered. For example, while meridional winds are an order of magnitude smaller than zonal winds over only a very narrow range of spatial scales (planetary wavenumber ), an examination of meridional geostrophic balance and inertio-gravity waves indicates long-wave dynamics for a broader range of scales (). A simple prediction is also presented for this range of scales based on physical and mathematical reasoning.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3