A Unified Theory for the Great Plains Nocturnal Low-Level Jet

Author:

Shapiro Alan1,Fedorovich Evgeni2,Rahimi Stefan3

Affiliation:

1. School of Meteorology, and Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma

2. School of Meteorology, University of Oklahoma, Norman, Oklahoma

3. Department of Atmospheric Science, University of Wyoming, Laramie, Wyoming

Abstract

Abstract A theory is presented for the Great Plains low-level jet in which the jet emerges in the sloping atmospheric boundary layer as the nocturnal phase of an oscillation arising from diurnal variations in turbulent diffusivity (Blackadar mechanism) and surface buoyancy (Holton mechanism). The governing equations are the equations of motion, mass conservation, and thermal energy for a stably stratified fluid in the Boussinesq approximation. Attention is restricted to remote (far above slope) geostrophic winds that blow along the terrain isoheights (southerly for the Great Plains). Diurnally periodic solutions are obtained analytically with diffusivities that vary as piecewise constant functions of time and slope buoyancies that vary as piecewise linear functions of time. The solution is controlled by 11 parameters: slope angle, Coriolis parameter, free-atmosphere Brunt–Väisälä frequency, free-atmosphere geostrophic wind, radiative damping parameter, day and night diffusivities, maximum and minimum surface buoyancies, and times of maximum surface buoyancy and sunset. The Holton mechanism, by itself, results in relatively weak wind maxima but produces strong jets when paired with the Blackadar mechanism. Jets with both Blackadar and Holton mechanisms operating are shown to be broadly consistent with observations and climatological analyses. Jets strengthen with increasing geostrophic wind, maximum surface buoyancy, and day-to-night ratio of the diffusivities and weaken with increasing Brunt–Väisälä frequency and magnitude of minimum slope buoyancy (greater nighttime cooling). Peak winds are maximized for slope angles characteristic of the Great Plains.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 115 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3