Why Do Model Tropical Cyclones Grow Progressively in Size and Decay in Intensity after Reaching Maturity?

Author:

Kilroy Gerard1,Smith Roger K.1,Montgomery Michael T.2

Affiliation:

1. Meteorological Institute, Ludwig-Maximilians University of Munich, Munich, Germany

2. Department of Meteorology, Naval Postgraduate School, Monterey, California

Abstract

Abstract The long-term behavior of tropical cyclones in the prototype problem for cyclone intensification on an f plane is examined using a nonhydrostatic, three-dimensional numerical model. After reaching a mature intensity, the model storms progressively decay while both the inner-core size, characterized by the radius of the eyewall, and the size of the outer circulation—measured, for example, by the radius of the gale-force winds—progressively increase. This behavior is explained in terms of a boundary layer control mechanism in which the expansion of the swirling wind in the lower troposphere leads through boundary layer dynamics to an increase in the radii of forced eyewall ascent as well as to a reduction in the maximum tangential wind speed in the layer. These changes are accompanied by changes in the radial and vertical distribution of diabatic heating. As long as the aggregate effects of inner-core convection, characterized by the distribution of diabatic heating, are able to draw absolute angular momentum surfaces inward, the outer circulation will continue to expand. The quantitative effects of latitude on the foregoing processes are investigated also. The study provides new insight into the factors controlling the evolution of the size and intensity of a tropical cyclone. It provides also a plausible, and arguably simpler, explanation for the expansion of the inner core of Hurricane Isabel (2003) and Typhoon Megi (2010) than that given previously.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3