Exploring the Role of Eddy Momentum Fluxes in Determining the Characteristics of the Equinoctial Hadley Circulation: Fixed-SST Simulations

Author:

Singh Martin S.1,Kuang Zhiming1

Affiliation:

1. Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts

Abstract

Abstract The influence of eddy momentum fluxes on the equinoctial Hadley circulation is explored using idealized simulations on an equatorial beta plane in which the sea surface temperature (SST) distribution is fixed. By comparing simulations run in a wide-domain configuration, in which large-scale eddies are present, to simulations in which the model domain is too narrow to permit baroclinic instability, the role of large-scale eddies in determining the characteristics of the Hadley circulation is elucidated. The simulations also include an explicit representation of deep convection, allowing for an evaluation of the influence of convective momentum transport on the zonal-mean circulation. The simulated eddy momentum fluxes are much weaker in the narrow-domain configuration than in the wide-domain case, and convective momentum transport is found to be of secondary importance. As a result, many characteristics of the narrow-domain Hadley circulation are well described by axisymmetric theory and differ from those of the wide-domain case. Nevertheless, the strength of the Hadley circulation is similar irrespective of the domain width. The sensitivity of this result to the strength of the eddy forcing is investigated using narrow-domain simulations forced by artificial sinks of zonal momentum. As the magnitude of the momentum sink increases, the Hadley circulation strengthens, but the increase is relatively modest except at very strong forcing magnitudes. The results suggest that the fixed-SST boundary condition places a strong thermodynamic constraint on the Hadley circulation strength and that one should consider the energy budget as well as the angular momentum budget in order to fully understand the influence of large-scale eddies on the zonal-mean circulation in the tropics.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3