Large-Eddy Simulations and Damped-Oscillator Models of the Unsteady Ekman Boundary Layer*

Author:

Momen Mostafa1,Bou-Zeid Elie1

Affiliation:

1. Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey

Abstract

Abstract The Ekman boundary layer (EBL) is a central problem in geophysical fluid dynamics that emerges when the pressure gradient force, the Coriolis force, and the frictional force interact in a flow. The unsteady version of the problem, which occurs when these forces are not in equilibrium, is solvable analytically only for a limited set of forcing variability regimes, and the resulting solutions are intricate and not always easy to interpret. In this paper, large-eddy simulations (LESs) of neutral atmospheric EBLs are conducted under various unsteady forcings to reveal the range of physical characteristics of the flow. Subsequently, it is demonstrated that the dynamics of the unsteady EBL can be reduced to a second-order ordinary differential equation that is very similar to the dynamical equation of a damped oscillator, such as a mass–spring–damper system. The validation of the proposed reduced model is performed by comparing its analytical solutions to LES results, revealing very good agreement. The reduced model can be solved for a wide range of variable forcing conditions, and this feature is exploited in the paper to elucidate the physical origin of the inertia (mass), energy storage (spring), and energy dissipation (damper) attributes of Ekman flows.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3