Momentum Balance and Eliassen–Palm Flux on Moist Isentropic Surfaces

Author:

Yamada Ray1,Pauluis Olivier2

Affiliation:

1. Courant Institute of Mathematical Sciences, New York University, New York, New York

2. Courant Institute of Mathematical Sciences, New York University, New York, New York, and Center for Prototype Climate Modeling, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates

Abstract

Abstract Previous formulations for the zonally averaged momentum budget and Eliassen–Palm (EP) flux diagnostics do not adequately account for moist dynamics, since air parcels are not differentiated by their moisture content when averages are taken. The difficulty in formulating the momentum budget in moist coordinates lies in the fact that they are generally not invertible with height. Here, a conditional-averaging approach is used to derive a weak formulation of the momentum budget and EP flux in terms of a general vertical coordinate that is not assumed to be invertible. The generalized equation reduces to the typical mass-weighted zonal-mean momentum equation for invertible vertical coordinates. The weak formulation is applied here to study the momentum budget on moist isentropes. Recent studies have shown that the meridional mass transport in the midlatitudes is twice as strong on moist isentropes as on dry isentropes. It is shown here that this implies a similar increase in the EP flux between the dry and moist frameworks. Physically, the increase in momentum exchange is tied to an enhancement of the form drag associated with the horizontal structure of midlatitude eddies, where the poleward flow of moist air is located in regions of strong eastward pressure gradient.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3