Simultaneous Detection of Climate Change and Observing Biases in a Network with Incomplete Sampling

Author:

Sherwood Steven C.1

Affiliation:

1. Yale University, New Haven, Connecticut

Abstract

Abstract All instrumental climate records are affected by instrumentation changes and variations in sampling over time. While much attention has been paid to the problem of detecting “change points” in time series, little has been paid to the statistical properties of climate signals that result after adjusting (“homogenizing”) the data—or to the effects of the irregular sampling and serial correlation exhibited by real climate records. These issues were examined here by simulating multistation datasets. Simple homogenization methods, which remove apparent artifacts and then calculate trends, tended to remove some of the real signal. That problem became severe when change-point times were not known a priori, leading to significant underestimation of real and/or artificial trends. A key cause is false detection of change points, even with nominally strict significance testing, due to serial correlation in the data. One conclusion is that trends in previously homogenized radiosonde datasets should be viewed with caution. Two-phase regression reduced but did not resolve this problem. A new approach is proposed in which trends, change points, and natural variability are estimated simultaneously. This is accomplished here for the case of incomplete data from a fixed station network by an adaptation of the “iterative universal Kriging” method, which converges to maximum-likelihood parameters by iterative imputation of missing values. With careful implementation this method’s trend estimates had low random errors and were nearly unbiased in these tests. It is argued that error-free detection of change points is neither realistic nor necessary, and that success should be measured instead by the integrity of climate signals.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3