Analyzing Monthly Extreme Sea Levels with a Time-Dependent GEV Model

Author:

Méndez Fernando J.1,Menéndez Melisa1,Luceño Alberto2,Losada Inigo J.1

Affiliation:

1. Ocean and Coastal Research Group, Departamento Ciencias y Técnicas del Agua y del Medio Ambiente, Universidad de Cantabria, Santander, Spain

2. Departamento Matemática Aplicada y Ciencias de la Computación, Universidad de Cantabria, Santander, Spain

Abstract

AbstractA statistical model to analyze different time scales of the variability of extreme high sea levels is presented. This model uses a time-dependent generalized extreme value (GEV) distribution to fit monthly maxima series and is applied to a large historical tidal gauge record (San Francisco, California). The model allows the identification and estimation of the effects of several time scales—such as seasonality, interdecadal variability, and secular trends—in the location, scale, and shape parameters of the probability distribution of extreme sea levels. The inclusion of seasonal effects explains a large amount of data variability, thereby allowing a more efficient estimation of the processes involved. Significant correlation with the Southern Oscillation index and the nodal cycle, as well as an increase of about 20% for the secular variability of the scale parameter have been detected for the particular dataset analyzed. Results show that the model is adequate for a complete analysis of seasonal-to-interannual sea level extremes providing time-dependent quantiles and confidence intervals.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

Cited by 99 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3