Idealized Annually Averaged Macroturbulent Hadley Circulation in a Shallow-Water Model

Author:

Adam Ori1,Harnik Nili1

Affiliation:

1. Department of Geophysical, Atmospheric and Planetary Sciences, Tel Aviv University, Tel Aviv, Israel

Abstract

Abstract The interaction of midlatitude eddies and the thermally driven Hadley circulation is studied using an idealized shallow-water model on the rotating sphere. The contributions of the annually averaged differential heating, vertical advection of momentum from a stationary boundary layer, and the gross effect of eddies, parameterized by Rayleigh damping, including a hemispherically asymmetric damping, are examined at steady state. The study finds that the relative dominance of eddies, as quantified by the local Rossby number, is predicted by an effective macroturbulent Hadley circulation Prandtl number Pr. In addition, viscous solutions of the Hadley circulation width and strength, subtropical jet amplitude, and equator-to-pole temperature difference scale as deviations from the respective inviscid solutions. Semianalytic solutions for the steady circulation are derived in the limit of weak eddy dominance (small Pr) as deviations from the respective inviscid solutions. These solutions follow a three-region paradigm: weak temperature gradient at the ascending branch of the Hadley circulation, monotonically decreasing angular momentum at the descending branch, and modified radiative–convective equilibrium at the extratropics. Using the three-region solutions, scaling relations found in the full solutions are reproduced analytically. The weak eddy-dominance solutions diverge from the full solutions as Pr increases and may become invalid for Pr > 1 due to the breakdown of the three-region global circulation structure. The qualitative predictions of the response of the Hadley circulation to heating based on the weak eddy-dominance solutions and Pr are in agreement with the findings of more complex models and the observed atmosphere.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3