Microphysical Processes Evident in Aerosol Forcing of Tropical Deep Convective Clouds

Author:

Storer Rachel L.1,van den Heever Susan C.1

Affiliation:

1. Colorado State University, Fort Collins, Colorado

Abstract

Abstract This study investigates the effects of aerosols on tropical deep convective clouds (DCCs). A series of large-scale, two-dimensional cloud-resolving model simulations was completed, differing only in the concentration of aerosols available to act as cloud condensation nuclei (CCN). Polluted simulations contained more DCCs, wider storms, higher cloud tops, and more convective precipitation domainwide. Differences in warm cloud microphysics were largely consistent with the first and second aerosol indirect effects. The average surface precipitation produced in each DCC column decreased with increasing aerosol concentration. A detailed microphysical budget analysis showed that the reduction in collision and coalescence largely dominated the trend in average precipitation. The production of rain from ice, though it also decreased, became a more important contribution to precipitation as the aerosol concentration increased. The DCCs in polluted simulations contained more frequent extreme values of vertical velocity, but the average updraft speed decreased with increasing aerosols in DCCs above 6 km. An examination of the buoyancy term of the vertical velocity equation demonstrates that the drag associated with condensate loading is an important factor in determining the average updraft strength. The largest contributions to latent heating in DCCs were cloud nucleation and vapor deposition onto water and ice, but changes in latent heating were, on average, an order of magnitude smaller than those in the condensate loading term. The average updraft speed was largely affected by increased drag from condensate loading in more mature updrafts, while early storm updrafts experienced convective invigoration from increased latent heating.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3