On Thermally Forced Circulations over Heated Terrain

Author:

Kirshbaum Daniel J.1

Affiliation:

1. Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

Abstract

Abstract A combination of analytical and numerical models is used to gain insight into the dynamics of thermally forced circulations over diurnally heated terrain. Solutions are obtained for two-layer flows (representing the boundary layer and the overlying free troposphere) over an isolated mountainlike heat source. A scaling based on the linearized Boussinesq system of equations is developed to quantify the strength of thermally forced updrafts and to identify three flow regimes, each with distinct dynamics and parameter sensitivities. This scaling closely matches corresponding numerical simulations in two of these regimes: the first characterized by a weakly stable boundary layer and significant background winds and the second by a strongly stable boundary layer. In the third regime, characterized by weak winds and weak boundary layer stability, this scaling is outperformed by a fundamentally different scaling based on thermodynamic heat engines. Within this regime, the inability of wind ventilation or static stability to diminish the buoyancy over the heat source leads to intense updrafts that are controlled by nonlinear dynamics. These nonlinearities create a positive feedback loop between the thermal forcing and vorticity that rapidly strengthens the circulation and contracts its central updraft into a narrow core. As the circulation intensifies under daytime heating, the warmest surface-based air is ventilated into the upper boundary layer, where it spreads laterally to occupy a broader area and, ultimately, restrain the circulation strength. The success demonstrated herein of simple theoretical models at predicting key aspects of thermally forced circulations offers hope for improved parameterization of related processes (e.g., convection initiation and aerosol venting) in large-scale models.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3