Simulation of an Orographic Precipitation Event during IMPROVE-2. Part II: Sensitivity to the Number of Moments in the Bulk Microphysics Scheme

Author:

Milbrandt J. A.1,Yau M. K.2,Mailhot J.1,Bélair S.1,McTaggart-Cowan R.1

Affiliation:

1. Meteorological Research Division, Environment Canada, Dorval, Quebec, Canada

2. McGill University, Montreal, Quebec, Canada

Abstract

Abstract This is the second in a series of papers examining the behavior of the Milbrandt–Yau multimoment bulk microphysics scheme for the simulation of the 13–14 December 2001 case of orographically enhanced precipitation observed during the second Improvement of Microphysical Parameterization through Observational Verification Experiment (IMPROVE-2) experiment. The sensitivity to the number of predicted moments of the hydrometeor size spectra in the bulk scheme was investigated. The triple-moment control simulations presented in Part I were rerun using double- and single-moment configurations of the multimoment scheme as well the single-moment Kong–Yau scheme. Comparisons of total precipitation and in-cloud hydrometeor mass contents were made between the simulations and observations, with the focus on a 2-h quasi-steady period of heavy stratiform precipitation. The double- and triple-moment simulations were similar; both had realistic precipitation fields, though generally overpredicted in quantity, and had overprediction of snow mass and an underprediction of cloud water aloft. Switching from the triple- to single-moment configuration resulted in a simulation with a precipitation pattern shifted upwind and with a larger positive bias, but with hydrometeor mass fields that corresponded more closely to the observations. Changing the particular single-moment scheme used had a greater impact than changing the number of moments predicted in the same scheme, with the Kong–Yau simulations greatly overpredicting the total precipitation in the lee side of the mountain crest and producing too much snow aloft. Further sensitivity tests indicated that the leeside overprediction in the Kong–Yau runs was most likely due to the combination of the absence of the latent heat effect term in the diffusional growth rate for snow combined with the assumption of instantaneous snow melting in the scheme.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3